Die folgenden Arbeiten erschienen 1987 in einer Mitteilung des Kulturbundes der DDR, Arbeitskreis "Numerische Astronomie" und ich möchte diese hiermit weiteren Interessenten zugänglich gemachen.

1. Meridiandurchgang, Auf- unf Untergang, Dämmerungszeiten Mit dieser Anleitung können auch die Erscheinungen von beweglichen Objekten berechnet werden.

2. Topozentrische Koordinaten von Mond, Sonne und Planeten
 3. Genaue Berechnung der Präzession
 4. Scheinbare Sternzeit

In dieser Mitteilung werden Berechnuggamethoden aus versohiedenen Gebieten der Astronomie vorgestellt. Vorausgesetzt werden Kenntnisse zur Berechnung des Julianischen Datums und der sternzeit. Auf ausfuhrliche Erläuterungen wird zugunsten einer kurzen Darstellug des Rechenweges verzichtet. Hieruber informiert die populärwissenschaftliche Literatur, z.B. Brockhaus Astronomie.

1. Meridiandurchgang, Auf-und Untergang, Dëmmerungazeiten

Mit der folgenden Anleitung können fur beliebige geographische Orte diene Erscheinungen auf die Minute, bei Meridiandurchgangen abhüngig von der Genauigkeit der Auagangswerte auf die Sekunde genau berechnet werden. Diese ungleichformig sindern, z.B. Mond, Planeten und auch Kometen.
In die Rechnung gehen die geographischen Koordinaten Breite φ Gaoh Morden positiv gezählt) und Lënge λ (neue Empfehlung der IAU: nach Osten positiv gezählt) ein. Die Länge ist in Stunden anzugeben. Zur Vermeidung von Umrechnungsfehlern wird einheitilch in Weltzeit UT gerechnet Der fag des betreffenden Datums beginnt mit 0^{i} uT und endet mit $24^{\text {I }}$ UT. Die Ergebniase können in Zonenzeiten oder Ortazeiten ungerechnet werden; dabei kann sich das Datum ändern. Einen Detumgwechsel erkennt man in der Rechnuing wie folgt: Wird bei der Umrechnuag die Zeit negativ, beziehen sich die Angaben auf den vorhergehenden Tag, es aind 24 Stunden zu addieren. Bei zeiten tber 24 Stunden gelten die Angaben fur den folgenden Tag, es sind 24 Stunden zu aubtrahieren.
Auber der Position des Gestirns (Rektaszension α und Deklination δ zum Äquinoktiun des Datums oder zum Beginn des nächstliegenden Jahresanfanges ist die Kenntnis der Sternzeit \hat{O}_{0} um 0 Uhr UT des betreffenden tages auf 0 Grad geographischer Länge erforderlich.

1.1. Berechnumg fir Geatime mit konatanter Podition

1.1.1. Meridiandurehgang

$$
\begin{equation*}
D=0,99726957\left(\alpha-v_{0}-\lambda\right) \tag{1}
\end{equation*}
$$

1.1.2. Auf- we Untergang

Diese Zeiten beziehen sich auf den mathematisehen Horisont. Die fefraktion geht in die Rechnung mit einem konstanten Wert von 0,58 ein. Bei Sonne und Yond werden die Angaben auf den oberen Rand der Sonnen- bzw. Mondsoheibe bezogen. Zusatzlich iat beim Mond noch die Parallaxe zu berucksichtigen.

Der halbe Tagbogen wird mit folgenden Zenitdistanaen gerechnet:
Stern ohn Refraltion $z=90,00^{\circ}$
Sterne mit Refraktion $z=90,58^{\circ}$
Sonne
$z=90,58^{\circ}+0,27^{\circ}=90,85^{\circ}$
Mond
$z=90,58^{\circ}+Q-\pi$
Q ist der scheinbare Halbmesser und T die Horizontalparallaxe.
Halber Tagbogen (in Sternzeit-Stunden):

$$
\begin{equation*}
t_{0}=\frac{1}{15} \operatorname{arc} \cos \left(\frac{00 \operatorname{z}-\operatorname{ain} \varphi \sin \delta}{\cos \varphi \cos \delta}\right) \tag{2}
\end{equation*}
$$

Diese Formel ist nicht lobbar, wenn das Gestirn nie auf- oder untergeht.

Aufgang:

$$
\begin{equation*}
\left.A=0,99726957\left(\alpha-v_{0}^{2}-\lambda-t_{0}\right) \quad 1\right) \tag{3}
\end{equation*}
$$

Untergang:

$$
\begin{equation*}
\left.U=0,99726957\left(\alpha-v_{0}-\lambda+t_{0}\right) 1\right) \tag{4}
\end{equation*}
$$

Die Auf- und Untergangazeiten beziehon aich joweils auf das Datum, fitr welchea die Sternzelt $\%_{0}$ gerechnet wurde.

Das Azinut des Auf- und Untergangspunktes, auch Morgen-bzw. Abondweite genannt: 2)
$a=\arccos \left(-\frac{\operatorname{ain} \delta}{\cos \varphi}\right) \quad$ fur $z=90^{\circ}$
$a=\operatorname{arc} \cos \left(\frac{\sin \varphi \cos z-\sin \delta}{\cos \varphi \sin z}\right) \quad$ fir $z \neq 90^{\circ}$
Daa Azimut pur den Aufgang beträgt $360^{\circ}-a$, wenn a von Suid uber West gezahlt wird.

1.2. Berechnung fur Gestime mit veränderlicher Position

Es Wird die Differeng des Stundenwinkels t von 0^{h} UT (mit der Position zu dieser zeit) bia zum Ereignis ermittelt:

$$
\begin{array}{ll}
\text { Meridiandurchgang } & t=\left(\alpha_{0}-v_{0}-\lambda\right) / 24 \\
\text { Aufgang } & t=\left(\alpha_{0}-v_{0}-\lambda-t_{0}\right) / 24 \\
\text { Untergang } & t=\left(\alpha_{0}-v_{0}-\lambda+t_{0}\right) / 24 \tag{9}
\end{array}
$$

Danach wird iterativ der wahre Stundenwinkel gerechnet, d.h., die Positionsänderung in Rektaszension bis zum Ereignis addiert. Falls fir die Bewegung in Rektaszension die lineare Interpolation nicht ausreicht, ist die Bildung eines Differenzenschemas für die weitere Rechnung erforderlich:
2) - exakt definiert ist Morgen- bzw. Abendweite der Winkelabstand vom Ost- bzw. Westpunkt

Bei der folgenden Formel können gegebenenfalla die Glieder der höheren Interpolation entfallen:

$$
\begin{align*}
t_{n+1}=t+\frac{\Lambda_{12}}{24} t_{n} & +\frac{\Delta_{21}+\Delta_{22}}{48} \cdot \frac{t_{n}\left(t_{n}-1\right)}{2} \\
& +\frac{\Delta_{3}}{24} \frac{t_{n}\left(t_{n}-1\right)\left(t_{n}-0,5\right)}{6} \tag{10}
\end{align*}
$$

Begonnen wird mit $t_{n}=t$, nach zwei oder drei Rechnungen iat meiatens die gewinachte Genauigkeit erreicht.
1.2.1. Meridiandurchgang

$$
\begin{equation*}
D=24 \cdot 0,99726957 t_{m+1} \tag{11}
\end{equation*}
$$

1.2.2. Auf- und Untergang

Für diese Rechnung wird zunächat eine wahrscheinliche Deklination angenomen, ginstig ist die Deklination fur 12 Uhr UP. Dann wird die Deklination fur den erhaltener Zeitpunkt des Auf- oder Untergangea interpoliert und ab halben Tagbogen. (2) ornout gerechnet.

Auf- und Untergang:

$$
\begin{equation*}
\text { A bzw. } \mathbf{U}=24 \cdot 0,99726957 \mathbf{t}_{\mathbf{n}+1} \tag{12}
\end{equation*}
$$

1.3. Beginn und Ende der Dämmerung

Gerechnet wird mit den Sonnenkoordinaten. Pür den Dämmerungsbeginn abhelt die Rechnung dem Sonneraufgang und fïr das Dérmerungende dem Somenuntergang.
In Formel (2) werden folgende zenitaistanzen eingesetzt:

Bügerliche Dammerung	$z=96^{\circ}$
Nautische Dämerung	$z=102^{\circ}$
Astronomische Dämerung	$z=108^{\circ}$

Fïr viele Anspriche genügt hiergu eine genäherte Rechnung.

1) Vor Multiplikation bzw. Division ist der Wert in der Klamer auf das Intervall 0... 24 Stunden zu redueieren.
Nur einmal +24 oder -24 Stunden rechnen, ist der Klammerwert danach noch nicht in Intervall $0 . . .24$ Stunden, fallt die Erscheinung nicht in der entepreohenden Tag und die Rechnung bleibt ohne Ergebnia.

Beinpisl: Wann geht om 1. Januar 1979 auf 15° ostlieher Iänge die Sonne durch den Heridian?

Die Rektamzension der Some aus oinen Jahrbueht
1979 Jan. $1 \quad 18^{h} 43^{m} 22^{s}=18^{h}, 72278 \quad{ }^{h} \quad$ h. 27361

Formel (7): $t=(18,72278-6,67000-1,0) / 24=0,4605325$
Formel (10) gekirzt euf Ineare Interpelation:

$$
\begin{aligned}
& t_{n+1}=0,4605325+0,07361 \cdot 0,4605325 / 24=0,461945 \\
& t_{n+1}=0,4605325+0,07361 \cdot 0,461945 / 24=0,461949 \\
& t_{n+1}=0,4605325+0,07361 \cdot 0,461949 / 24=0,461949
\end{aligned}
$$

Fermel (11) ergibt:
$D=24 \cdot 0,99726957 \cdot 0,461949=11^{h}, 056504=11^{\mathrm{h}} 03^{m} 23^{m}$ Wi
Beispiel: Auf- und Ontergang mowie Meridiandurehgang des Mondea an 5. Januar 1979 auf 15 Grad batlicher Lănge und 50 Grad nördlicher Breite

Rektassencion und Deklination aus einem Jahrbuch:

$$
\begin{aligned}
\theta_{0} & =6^{h_{5}} 55^{1 n_{5}} \\
q & =6 \frac{h}{,} 93306 \\
q & =0^{0}, 267 \\
\pi & =0,967 \\
r(7) & \text { ergibt } t=0,692027 \\
t_{n+1} & =0,7167932 \\
& =0,717674 \\
& =0,717705 \\
& =0,717706
\end{aligned}
$$

Formel (7) ergibt $t=0,692027$ und mit Formel (10) erhält man

Formel (11):

$$
D=24 \cdot 0,99726957 \cdot 0,717706=17,17792=17^{\mathrm{h}} 10_{2} 7^{\mathrm{m}} \mathrm{UT}_{\mathrm{U}}
$$

Pir den Aufgang wird in (2) $y=89,88$ eingesetzt: $t_{0}=6,2958$ Hach Reohnung mit (8) und (10) int $t_{n+1}=0,44568$ md die exste Maherung von A iet:
$A=10,6672=10^{\mathrm{h}} 40^{\mathrm{m}}$ UT, su dieser zeit betrigt ele Deklination 3:63 und der verbesserte Stundenwinkel neen (2):

$$
t_{0}=6 \frac{h}{2} 2766
$$

Die Untergangazeit rechnet sich ähnlich. Als erste Häherung erhalt man
$U=23^{\mathrm{h}} 6874=23^{\mathrm{h}} 41^{\mathrm{m}}$ UP.
Die verbesaerte Deklination ven 5,90 fthrt dama su

$$
\mathrm{U}=23^{\mathrm{h}} 8562=23^{\mathrm{h}}=1^{\mathrm{m}} \mathrm{UP}
$$

In MEZ ungerechnet findet der Monduntergang am 6. Januar um $0^{h_{5}} 1^{\text {m }}$ statt. Am 5. Januar geht nach MEZ der Mond nicht unter.
Anmerkung: Die Beispiele wurden so gewalt, daB eine Nachrechnung
mit Angabon aus dem "Kalender far Sternireunde" ohne veitere Umrechnungen iogelich ist.
2. Topozentrische Koordinaten Von Mond, Sonne und Pleneten
Di. Jahrblacher geben geozentrigche Keordinaten von Mond, Sonne und Planeten. Für die Berechnung einiger Eracheinungen, z.B. Sonnenfinsternisse und Bedeckungen durch den Mond, werden jedoch topozentriache auf den Beobachtuagaert bezogene, Koordinaten benötigt. Sie untergcheiden sieh Fon den geozentrimehen durch die Berucksichtigung der täglichen Parallaxe.
Fir genaue Rechnungen (wir verstehen hier auf die Bogensekunde genau) sind zu beachten:

- die von der Kugel abweichende Gestalt der Erde
- Höhe des Beobachtungsortes über Hormalnull
- Einfliasse der Präzession, Hutation und Aberration (mittlere oder scheinbare Koordinaton)
- Einfluß der Nutation auf die Sternzeit (mittlere oder scheinbare Sternzeit)
In der folgenden Rechnung werden diese Einfluisse bericksichtigt. Die Rechnung ist entweder mit
- gcheinberen Koerdinaten und mit
- meheinbarer Sternzeit
oder mit
- mittleren Koordinaten sum Äquinoktium des Datumg und mit
- mittlerer Sternzeit
durahzufuliren.
Bei genäherter Rechnung (auf die Bogenminute genau entaprechend des Kelenders für Sternfreunde) genügen mittlere Orter bezogen auf das Aquinoktium des Datums. Die tagliche Parallaxe von Sonne und Planeten sowie Hutation und Aberration können hier vernachlabigt werden. Lediglich die tëgliohe Parallaxe des Mondes geht stets in die Rechnung ein.
2.1. Geozentrische Koordinaten des Beobachtungsortes

Geozentrisohe Breite:

$$
\varphi^{\prime}=\operatorname{arc} \tan (0,99330546 \tan \varphi)
$$

Geozentrischer Abstand:

$$
q=\frac{6356774,7}{\sqrt{1-0,00669454 \cos ^{2} \varphi^{\prime}}}=
$$

$q=(\rho+$ Höhe uber Normalnull $) / 6378160$ n
2.2. Topozentrische Koordinaten von Sonne und Planeten

$$
\begin{aligned}
& \alpha_{\text {top }}=\alpha_{g e 0}-\frac{8,794}{\Delta} \frac{\cos \varphi^{\prime} \sin \left(v^{\prime}-\alpha\right)}{\cos \delta} \\
& \delta_{\text {top }}=\delta_{g e 0}-\frac{8_{0}^{\prime \prime} 794}{\Delta}\left(\cos \delta \sin \varphi^{\prime}-\sin \delta_{\left.\cos \varphi_{0}^{\prime} \theta(\eta h-\alpha)\right)}\right.
\end{aligned}
$$

4... Abstand von der Erde in astronomischer Entfernungseinheit A. 2.3. Topozentrisohe Koordinaten des Mondes

Die Vektoren
Erdmittelpunkt - Mondmittelpunkt und
Erdmittelpunkt - Beobachtungeort
werden subtrahiert und der erhaltene Vektos
Beobachtungsort - Mondmittelpunkt
entspricht den topozentrischen Koordinaten.
Diese Rechnung ist exakt, weil alle Einflasse der täglichen Parallare berieksichtigt sind.
Die folgenden Formeln ergeben zunächst die rechtwinkligen topezentrischen Koordinaten:

$$
\begin{align*}
& x=\frac{\cos \delta \cos \alpha}{\sin \pi}-q \cos \varphi^{\prime} \cos v \tag{1}\\
& y=\frac{\cos \delta \sin \alpha}{\sin \pi}-q \cos \varphi^{\prime} \sin v \tag{2}\\
& z=\frac{\sin \delta}{\sin \pi}-q \sin \varphi^{\prime}
\end{align*}
$$

Daraus erhält man die geauchten Koordinaten:

$$
\begin{align*}
& \alpha_{t o p}=\text { arc } \tan (y / x) \tag{4}\\
& \delta_{t o p}=\operatorname{arc} \tan \left(z / \sqrt{x^{2}+y^{2}}\right) \tag{5}\\
& \pi_{\text {top }}=\operatorname{arc} \sin \left(1 / \sqrt{x^{2}+y^{2}+x^{2}}\right) \tag{6}\\
& Q_{\text {top }}=0,27247 \pi_{\text {top }} \tag{7}\\
&\left(\pi_{\text {top }}\right. \text { ist die topozentrische Parallaxe und e }
\end{align*}
$$

Beispiel: Am 3. Oktober 1986 um $18^{\mathrm{h}} 56,9^{\text {m }}$ UT beginnt eine totale Sonnenfinsternis an dem Ort mit den folgenden geographischen Koordinaten: Länge $=-38^{\circ} 16^{\circ}$ (westliche Länge) und Breite $=65^{\circ} 00$:
Zur Bestätigung werden die topozentrisehen Koordinaten von Sonne und Mond gereehnet.
geozentrische Koordinaten: Sonne: $\alpha=189,4356126^{\circ}$

$$
\delta=-4,066273009^{\circ}
$$

Mond: $\alpha=189,8345666^{\circ}$

$$
\delta=-3,181225995^{\circ}
$$

Sternzeit: $V^{Q}=264,1407657^{\circ}$
geozentrische Koordinaten: $\varphi^{\prime}=64,85227^{\circ}$
$q=0,99725$
Die Rechnung ergibt für die Sonne folgende topozentrische Koordinaten:

$$
\alpha_{\text {top }}=189,4346098^{\circ}
$$

$\delta_{\text {top }}=-4,06853412^{\circ}$
Zur gegebenen Zeit beträgt die Parallaxe des Mondes $\pi=58^{\circ} 35,4^{n}$ und der geozentrische Halbmesser $e=15^{\circ} 57,9^{\prime \prime}$.
Die rechtwinkligen Koordinaten sind

$$
x=-57,68285524 ; \quad y=-9,585329787 \text { und } z=-4,158993736
$$

Daraus erhält man:

$$
\begin{aligned}
& \alpha_{\text {top }}=189,4347962^{\circ} \\
& \delta_{\text {top }}=-4,068351933^{\circ}
\end{aligned}
$$

$$
\Pi_{\text {top }}=0,9774314508^{\circ} \text { und damit ist } e_{\text {top }}=0,2663207474^{\circ} .
$$

In diesom Beispiel sind die angezeigten Stellen des Rechners wieder- gegeben, die letzten Ziffern sind meistens ohne Bedeutung.
Vergleicht man die topozentrischen Koordinaten, so bleibt nur eine Differenz von weniger als einer Bogensekunde und die Bedingung fur den Beginn der Sonnenfinsternis ist erfüll. Als Sonnenhalbmesser wird angegeben: $P=15^{\circ} 59,2^{\prime \prime}$, or ändert sich während der Finsternis praktisch nicht.
Dieses Beispiel ist keine Anleitung zum Berechnen von Sonnenfinster-. nissen.

3. Genaue Berechnung der Prëzegsion

(für einige Jahrzehnte, auBer polnahe Örter)
Mit den folgenden Formeln können Koordinaten umgerechnet werden von einer beliebigen Ausgangsepoche J_{A} in eine beliebige Zielepoche J_{Z}. Die Epochen können in Jahre oder ginstiger in Julianische Tage ausgedrickt werden und man erhält T als Bruchteil des Jahrhunderts:

$$
\begin{aligned}
& \mathbb{T}=\left(\frac{J_{Z}-J_{A}}{2}+J_{A}-2000,0\right) / 100 \quad\left(J_{Z} \text { und } J_{A} \text { in Jahre }\right) \\
& \mathbb{T}=\left(\frac{J_{Z}-J_{A}}{2}+J_{A}-2451545,0\right) / 36525 \quad\left(J_{Z} \text { und } J_{A} \text { in } J D\right)
\end{aligned}
$$

Mit der Zeitdifferenz t und den Präzessionskonstanten m und n errechnen sich die Koordinaten zur Zielepoche:

$$
\begin{array}{ll}
t=\frac{J_{Z}-J_{A}}{100} & \left(J_{Z} \text { und } J_{A} \text { in Jahre }\right) \\
t=\frac{J_{Z}-J_{A}}{36525} & \left(J_{Z} \text { und } J_{A} \text { in } J D\right)
\end{array}
$$

$$
\begin{aligned}
& m=1,280917+0,000775 \mathrm{~T} \\
& \mathrm{n}=0,556620-0,000236 \mathrm{~T} \\
& \alpha_{Z}=\dot{\alpha}_{A}+\left(m+n \sin \alpha_{A} \tan \delta_{A}\right) t \\
& \delta_{Z}=\delta_{A}+\left(n \cos \alpha_{A}\right) t
\end{aligned}
$$

Bei Sternen ist vor der Rechnung die Eigenbewegung qu bericksichtigen.
Beispiel: Von d UMa aind die Koordinaten fur die Fpoche 1980,0 bekannt, gesucht sind sie fur die Epoche 1900,0.
Die Position fur 1980,0:

$$
\alpha=6^{h} 44^{m} 16,0^{s} \text { und } \delta=-16^{\circ} 41^{\prime} 46^{\prime \prime} .
$$

Die jainrliche Eigenbewegung betrigt $\mu_{\alpha}=-0,374^{n}$ und $\mu_{\delta}=-1,21^{\prime \prime}$.
Die korrigierte Position ist danit:

$$
\alpha_{A}=101,07498^{\circ} \text { und } \delta_{A}=-16,660889^{\circ}
$$

Mit $4=-0,6$ erhält man

$$
m=1,280452 \text { und } n=0,5567616
$$

Die Zielkoordinaten sind:

$$
\alpha_{z}=6^{\mathrm{h}} 40^{m_{43,}} \mathrm{5} \quad \text { and } \quad \delta_{z}=-16^{\circ} 34^{\circ} 31^{\prime \prime} .
$$

4. Scheinbare Sternzeit

Sie unteracheidet sich von der mittleren Sternzeit un den Betrag der Nutation in Rextaszension, auch "Gleichung der Âquinoktien" genannt. Kit ausreichender Genauigkeit fur Amateure genugt eine genäherte Rechnung, in dem die Störung durch den Mondknoten bericksichtigt wird:

$$
v_{\mathrm{g}}=V_{\mathrm{m}}-1 ; 06 \sin \Omega
$$

(v_{g} ist die scheinbare und \hat{h}_{m} die mittlere sternzeit, d der aufsteigende Knoten des Mondes)

